Sloppiness and the Geometry of Parameter Space

نویسندگان

  • Brian K. Mannakee
  • Aaron P. Ragsdale
  • Mark K. Transtrum
  • Ryan N. Gutenkunst
چکیده

When modeling complex biological systems, exploring parameter space is critical, because parameter values are typically poorly known a priori. This exploration can be challenging, because parameter space often has high dimension and complex structure. Recent work, however, has revealed universal structure in parameter space of models for nonlinear systems. In particular, models are often sloppy, with strong parameter correlations and an exponential range of parameter sensitivities. Here we review the evidence for universal sloppiness and its implications for parameter fitting, model prediction, and experimental design. In principle, one can transform parameters to alleviate sloppiness, but a parameterization-independent information geometry perspective reveals deeper universal structure. We thus also review the recent insights offered by information geometry, particularly in regard to sloppiness and numerical methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geometry of sloppiness

The use of mathematical models in the sciences often requires the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness and define rigorously its key concepts, such as ‘model manifold’, in relation to concepts of structural identifiability. We redefine slopp...

متن کامل

Delineating parameter unidentifiabilities in complex models.

Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable param...

متن کامل

Sloppy models can be identifiable

Dynamic models of biochemical networks typically consist of sets of non-linear ordinary differential equations involving states (concentrations or amounts of the components of the network) and parameters describing the reaction kinetics. Unfortunately, in most cases the parameters are completely unknown or only rough estimates of their values are available. Therefore, their values must be estim...

متن کامل

Assessing users' visual perception based on the regular and irregular geometry of space organizer

Perception is a cognitive process depends on various factors of the environment. The user's mentality can affect his perception, understanding, and behavior in the environment. Organizing the environment is one of the important factors in the formation of spatial communication of elements that can be an important factor in understanding the person from his or her surroundings. In this research,...

متن کامل

Universally Sloppy Parameter Sensitivities in Systems Biology Models

Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Neverthele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015